Telegram Group & Telegram Channel
Допустим, вам надо предсказать доход человека. У вас есть все необходимые признаки, а данных достаточно. После построения модели как вы определите, что она получилась хорошей?

Чтобы оценить, что построенная модель для предсказания доходов человека получилась хорошей, нужно сделать следующее:

▪️Выбрать метрику качества модели: MAE (Mean Absolute Error), MSE (Mean Squared Error) или RMSE (Root Mean Squared Error). Она поможет понять, насколько точно модель предсказывает целевую переменную.

▪️Разделить имеющиеся данные на две части — обучающую и тестовую выборки. Обучающая выборка используется для построения модели, а тестовая — для оценки её качества. Это необходимо для предотвращения переобучения, когда модель хорошо работает на обучающих данных, но плохо на новых примерах.

▪️После построения модели на обучающих данных следует проверить её качество на тестовых данных. Если значения метрик на обучающей и тестовой выборках не сильно различаются, это указывает на то, что модель не переобучилась и способна давать хорошие предсказания.

▪️Дополнительно можно использовать кросс-валидацию для более точной оценки стабильности модели. Это поможет удостовериться, что модель демонстрирует хорошие результаты на различных подвыборках данных.

#машинное_обучение
👍9



tg-me.com/ds_interview_lib/462
Create:
Last Update:

Допустим, вам надо предсказать доход человека. У вас есть все необходимые признаки, а данных достаточно. После построения модели как вы определите, что она получилась хорошей?

Чтобы оценить, что построенная модель для предсказания доходов человека получилась хорошей, нужно сделать следующее:

▪️Выбрать метрику качества модели: MAE (Mean Absolute Error), MSE (Mean Squared Error) или RMSE (Root Mean Squared Error). Она поможет понять, насколько точно модель предсказывает целевую переменную.

▪️Разделить имеющиеся данные на две части — обучающую и тестовую выборки. Обучающая выборка используется для построения модели, а тестовая — для оценки её качества. Это необходимо для предотвращения переобучения, когда модель хорошо работает на обучающих данных, но плохо на новых примерах.

▪️После построения модели на обучающих данных следует проверить её качество на тестовых данных. Если значения метрик на обучающей и тестовой выборках не сильно различаются, это указывает на то, что модель не переобучилась и способна давать хорошие предсказания.

▪️Дополнительно можно использовать кросс-валидацию для более точной оценки стабильности модели. Это поможет удостовериться, что модель демонстрирует хорошие результаты на различных подвыборках данных.

#машинное_обучение

BY Библиотека собеса по Data Science | вопросы с собеседований


Warning: Undefined variable $i in /var/www/tg-me/post.php on line 283

Share with your friend now:
tg-me.com/ds_interview_lib/462

View MORE
Open in Telegram


Библиотека собеса по Data Science | вопросы с собеседований Telegram | DID YOU KNOW?

Date: |

Telegram Gives Up On Crypto Blockchain Project

Durov said on his Telegram channel today that the two and a half year blockchain and crypto project has been put to sleep. Ironically, after leaving Russia because the government wanted his encryption keys to his social media firm, Durov’s cryptocurrency idea lost steam because of a U.S. court. “The technology we created allowed for an open, free, decentralized exchange of value and ideas. TON had the potential to revolutionize how people store and transfer funds and information,” he wrote on his channel. “Unfortunately, a U.S. court stopped TON from happening.”

To pay the bills, Mr. Durov is issuing investors $1 billion to $1.5 billion of company debt, with the promise of discounted equity if the company eventually goes public, the people briefed on the plans said. He has also announced plans to start selling ads in public Telegram channels as soon as later this year, as well as offering other premium services for businesses and users.

Библиотека собеса по Data Science | вопросы с собеседований from es


Telegram Библиотека собеса по Data Science | вопросы с собеседований
FROM USA